Answer:
[tex]m = -7[/tex]
Step-by-step explanation:
The objective is to find all values [tex]m[/tex] so that the function [tex]y=e^{mx}[/tex] is a solution of the differential equation [tex]y'+7y =0[/tex].
If [tex]y=e^{mx}[/tex] is a solution of the given differential equation, then it and its first derivative must satisfy the given equation. Let's calculate the derivative.
[tex]y = e^{mx} \implies y' = e^{mx} \overset{\text{Chain Rule}}{\cdot} (mx)' = me^{mx}[/tex]
Substituting [tex]e^{mx}[/tex] for [tex]y[/tex] and [tex]me^{mx}[/tex] for [tex]y'[/tex] in the equation gives
[tex]me^{mx} + 7e^{mx} = 0 \iff e^{mx}(m+7) = 0[/tex]
We can divide both sides by [tex]e^{mx}[/tex], since [tex]e^{mx} > 0, \; \forall x,m \in \mathbb{R} \implies e^{mx} \neq 0[/tex]. Thus,
[tex]m +7 = 0 \implies m = -7[/tex]
Therefore, the function [tex]y = e^{-7x}[/tex] is a solution of the differential equation [tex]y'+7y = 0.[/tex]