Answer:
91.64 km
91.64 km high material would go on earth if it were ejected with the same speed as on Io.
Explanation:
According to Newton Law of gravitation:
[tex]g=\frac{Gm}{r^2}[/tex]
Where:
G is gravitational constant=[tex]6.67*10^{-11} m^3/kg.s^2[/tex]
For Moon lo g is:
[tex]g_M=\frac{6.67*10^{-11}*8.93*10^{22}}{(1821*10^3)^2m^2} \\g_M=1.7962 m/s^2[/tex]
According to law of conservation of energy
Initial Energy=Final Energy
[tex]K.E_i+mgh_i=K.E_f+mgh_f[/tex]
[tex]\frac{1}{2}m(v_0)^2+mgh_o= \frac{1}{2}m(v_f)^2+mgh_f\\At\ maximum\ height\ v_f=0\\\frac{1}{2}m(v_0)^2+0=mgh_f\\v_0=\sqrt{2gh_f}[/tex]
For Jupiter's moon Io:
Velocity is given by:
[tex]v_0_M=\sqrt{2g_Mh_f_M}[/tex]
For Earth Velocity is given by:
[tex]v_0_E=\sqrt{2g_Eh_f_E}[/tex]
Now:
[tex]v_o_M=v_o_E[/tex]
[tex]\sqrt{2g_Mh_f_M}=\sqrt{2g_Eh_f_E}\\h_f_E=\frac{g_Mh_f_M}{g_E}[/tex]
[tex]g_E=9.8 m/s^2[/tex]
[tex]g_m=1.7962 m/s^2, As\ Calculated\ above[/tex]
[tex]h_f_E=\frac{1.7962*500*10^3m}{9.8} \\h_f_E=91642.85 m\\h_f_E=91.64Km[/tex]
91.64 km high material would go on earth if it were ejected with the same speed as on Io.