Answer:
The minimum value for [tex]f(x) = 0.15(x + 1)^2 - 3[/tex] is [tex]-3[/tex].
Step-by-step explanation:
Given function is [tex]f(x) = 0.15(x + 1)^2 - 3[/tex]
We need to find the maximum value or the minimum value for the function.
Now, differentiate [tex]f(x) = 0.15(x + 1)^2 - 3[/tex] w.r.t [tex]x[/tex].
[tex]f'(x) =\frac{d}{dx}(0.15(x + 1)^2 - 3)\\f'(x)=\frac{d}{dx}(0.15(x+1)^2-\frac{d}{dx}(3)\\[/tex]
[tex]f'(x)=2\times 0.15(x+1)\frac{d}{dx}(x+1)-0\\f'(x)=0.3(x+1)(1)\\f'(x)=0.3(x+1)[/tex]
Now, we will equate [tex]f'(x)=0[/tex] to find critical point.
[tex]0.3(x+1)=0\\x=-1[/tex]
Plug this critical point in to the function [tex]f(x) = 0.15(x + 1)^2 - 3[/tex] we get,
[tex]f(-1) = 0.15(-1 + 1)^2 - 3\\f(-1)=-3[/tex]
Also, [tex]f''(x)=0.3[/tex] which is positive, We have minimum value.
So, the minimum value for [tex]f(x) = 0.15(x + 1)^2 - 3[/tex] is [tex]-3[/tex].