Respuesta :

Answer:

The minimum value for  [tex]f(x) = 0.15(x + 1)^2 - 3[/tex] is [tex]-3[/tex].

Step-by-step explanation:

Given function is [tex]f(x) = 0.15(x + 1)^2 - 3[/tex]

We need to find the maximum value or the minimum value for the function.

Now, differentiate [tex]f(x) = 0.15(x + 1)^2 - 3[/tex]  w.r.t [tex]x[/tex].

[tex]f'(x) =\frac{d}{dx}(0.15(x + 1)^2 - 3)\\f'(x)=\frac{d}{dx}(0.15(x+1)^2-\frac{d}{dx}(3)\\[/tex]

[tex]f'(x)=2\times 0.15(x+1)\frac{d}{dx}(x+1)-0\\f'(x)=0.3(x+1)(1)\\f'(x)=0.3(x+1)[/tex]

Now, we will equate [tex]f'(x)=0[/tex] to find critical point.

[tex]0.3(x+1)=0\\x=-1[/tex]

Plug this critical point in to the function [tex]f(x) = 0.15(x + 1)^2 - 3[/tex]  we get,

[tex]f(-1) = 0.15(-1 + 1)^2 - 3\\f(-1)=-3[/tex]

Also, [tex]f''(x)=0.3[/tex] which is positive, We have minimum value.

So, the minimum value for  [tex]f(x) = 0.15(x + 1)^2 - 3[/tex] is [tex]-3[/tex].

RELAXING NOICE
Relax