The vertex is [tex](-1,1)[/tex]
Explanation:
The equation is [tex]f(x)=2x^{2} +4x+3[/tex]
To find the vertex, we need the equation in the form of [tex]f(x)=a (x-h)^{2}+k[/tex]
Dividing each term by 2 in the equation [tex]f(x)=2x^{2} +4x+3[/tex]
[tex]f(x)=2(x^{2} +2x+\frac{3}{2} )[/tex]
Now, completing the square by adding and subtracting 1, we get,
[tex]f(x)=2(x^{2} +2x+1-1+\frac{3}{2} )[/tex]
The first three terms can be written as [tex](x+1)^{2}[/tex],
[tex]f(x)=2[(x+1)^{2}+\frac{1}{2} ][/tex]
Multiplying 2 into the bracket, we get,
[tex]f(x)=2(x+1)^{2} +1[/tex]
This equation is of the form [tex]f(x)=a (x-h)^{2}+k[/tex]
Now, we shall find the vertex [tex](h,k)[/tex]
Thus, [tex]h=-1[/tex] and [tex]k=1[/tex]
Thus, the vertex is [tex](-1,1)[/tex]