Respuesta :

Answer:

No,  [tex]g(x)[/tex] and [tex]f(x)[/tex] are not inverses of each other.

Step-by-step explanation:

Given functions:

[tex]g(x)=4-\frac{3}{2}x[/tex]

[tex]f(x)=\frac{1}{2}x+\frac{3}{2}[/tex]

To tell whether [tex]g(x)[/tex] and [tex]f(x)[/tex] are inverse of each other.

Solution:

If  [tex]g(x)[/tex] and [tex]f(x)[/tex] are inverse of each other, then:

[tex]f(x)=g^{-1}x[/tex]   or  [tex]g(x)=f^{-1}(x)[/tex]

Thus, to check if they are inverse of each other, we will find inverse of function [tex]g(x)[/tex] and see if it is = [tex]f(x)[/tex]

We have:

[tex]g(x)=4-\frac{3}{2}x[/tex]

In order to find inverse we will replace [tex]g(x)[/tex] with [tex]y[/tex]

[tex]y=4-\frac{3}{2}x[/tex]

Then we switch [tex]x[/tex] and [tex]y[/tex]

[tex]x=4-\frac{3}{2}y[/tex]

Then, we solve for [tex]y[/tex]

Subtracting both sides by 4.

[tex]x-4=4-4-\frac{3}{2}y[/tex]

[tex]x-4=-\frac{3}{2}y[/tex]

Multiplying both sides by 2.

[tex]2(x-4)=2\times-\frac{3}{2}y[/tex]

Using distribution:

[tex]2x-8=-3y[/tex]

Dividing both sides by -3.

[tex]\frac{2x}{-3}-\frac{8}{-3}=\frac{-3y}{-3}[/tex]

[tex]-\frac{2}{3}x+\frac{8}{3}=y[/tex]

Thus inverse of function [tex]g(x)[/tex] can be given as:

[tex]g^{-1}(x)=\frac{8}{3}-\frac{2}{3}x[/tex]

Since [tex]g^{-1}(x)\neq f(x)[/tex], hence they are not inverse functions of each other.

ACCESS MORE
EDU ACCESS
Universidad de Mexico