Answer:
No, [tex]g(x)[/tex] and [tex]f(x)[/tex] are not inverses of each other.
Step-by-step explanation:
Given functions:
[tex]g(x)=4-\frac{3}{2}x[/tex]
[tex]f(x)=\frac{1}{2}x+\frac{3}{2}[/tex]
To tell whether [tex]g(x)[/tex] and [tex]f(x)[/tex] are inverse of each other.
Solution:
If [tex]g(x)[/tex] and [tex]f(x)[/tex] are inverse of each other, then:
[tex]f(x)=g^{-1}x[/tex] or [tex]g(x)=f^{-1}(x)[/tex]
Thus, to check if they are inverse of each other, we will find inverse of function [tex]g(x)[/tex] and see if it is = [tex]f(x)[/tex]
We have:
[tex]g(x)=4-\frac{3}{2}x[/tex]
In order to find inverse we will replace [tex]g(x)[/tex] with [tex]y[/tex]
[tex]y=4-\frac{3}{2}x[/tex]
Then we switch [tex]x[/tex] and [tex]y[/tex]
[tex]x=4-\frac{3}{2}y[/tex]
Then, we solve for [tex]y[/tex]
Subtracting both sides by 4.
[tex]x-4=4-4-\frac{3}{2}y[/tex]
[tex]x-4=-\frac{3}{2}y[/tex]
Multiplying both sides by 2.
[tex]2(x-4)=2\times-\frac{3}{2}y[/tex]
Using distribution:
[tex]2x-8=-3y[/tex]
Dividing both sides by -3.
[tex]\frac{2x}{-3}-\frac{8}{-3}=\frac{-3y}{-3}[/tex]
[tex]-\frac{2}{3}x+\frac{8}{3}=y[/tex]
Thus inverse of function [tex]g(x)[/tex] can be given as:
[tex]g^{-1}(x)=\frac{8}{3}-\frac{2}{3}x[/tex]
Since [tex]g^{-1}(x)\neq f(x)[/tex], hence they are not inverse functions of each other.