Respuesta :
Answer:
36 years 4 months and 2 days
Explanation:
Data provided in the question:
Monthly payment = $300
Rate of return, i = 9% = 0.09
Future value = $1,000,000
Now,
we know
Future value = Monthly payments × [tex]\left[ \frac{(1+i)^{n}-1}{i} \right][/tex]
or
1000000 = $300 × [tex]\left[ \frac{(1+0.0075)^{ }-1}{ 0.0075 }[/tex]
or
[tex]\frac{ 1000000}{ 300} &= \frac{ 1.0075^{n} - 1}{ 0.0075}[/tex]
[tex]3333.33333 &= \frac{ 1.0075^{n} - 1}{ 0.0075}[/tex]
[tex]1.0075^{n} - 1 &= 3333.33333 \times0.0075[/tex]
or
1.0075ⁿ - 1 = 25
or
1.0075ⁿ = 26
ln( 1.0075ⁿ) = ln(26)
or
n × ln( 1.0075 ) = ln(26)
or
n = [tex]\frac{ \ln (26) }{ \ln( 1.0075 ) }[tex]
or
n = 436.04 months
or
n = 36 years 4 months and 2 days
Answer:
436 months or 36.33 years
Explanation:
monthly principal P = $300
Amount to be obtained A = $1,000,000
ROI per annum R% = 9%
or ROI per month r% = 9/12 = 0.75%
and n = no. of months
We know that
[tex]A= P(1+\frac{r}{100})^n[/tex]
plugging values we get
[tex]1,000,000= 300(1+\frac{0.75}{100})^n[/tex]
solving the above equation we get
n = 436 months
which is equal to 36.33 years.
