Respuesta :
Answer:
a) [tex]P(X<175) = P(Z<\frac{175-183}{10.5}) =P(Z<-0.762)[/tex]
[tex]P(z<-0.762)=0.223[/tex]
b) [tex]P(X>195) =P(Z>\frac{195-183}{10.5})=P(Z>1.143)[/tex]
[tex]P(z>1.143)=1-P(Z<1.143) =1-0.873=0.127[/tex]
c) [tex]P(173<X<193)=P(\frac{173-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{193-\mu}{\sigma})=P(\frac{173-183}{10.5}<Z<\frac{193-183}{10.5})=P(-0.953<z<0.953)[/tex]
[tex]P(-0.953<z<0.953)=P(z<0.953)-P(z<-0.953)[/tex]
[tex]P(-0.953<z<0.953)=P(z<0.953)-P(z<-0.953)=0.830-0.170=0.660[/tex]
d) [tex]P(\bar X >190)=P(Z>\frac{190-183}{\frac{10.5}{\sqrt{1000}}}=21.08)[/tex]
And using a calculator, excel ir the normal standard table we have that:
[tex]P(Z>21.08)=1-P(Z<21.08) \approx 0[/tex]
So for this case we expect anyone with a heigth higher than 190 cm in a random sample of 1000.
Step-by-step explanation:
Previous concepts
Normal distribution, is a "probability distribution that is symmetric about the mean, showing that data near the mean are more frequent in occurrence than data far from the mean".
The Z-score is "a numerical measurement used in statistics of a value's relationship to the mean (average) of a group of values, measured in terms of standard deviations from the mean".
Part a
Let X the random variable that represent the heights of a population, and for this case we know the distribution for X is given by:
[tex]X \sim N(183,10.5)[/tex]
Where [tex]\mu=183[/tex] and [tex]\sigma=10.5[/tex]
We are interested on this probability
[tex]P(X<175)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(X<175) = P(Z<\frac{175-183}{10.5}) =P(Z<-0.762)[/tex]
And we can find this probability with the normal standard table or with excel:
[tex]P(z<-0.762)=0.223[/tex]
Part b
[tex]P(X>195)[/tex]
[tex]P(X>195) =P(Z>\frac{195-183}{10.5})=P(Z>1.143)[/tex]
And we can find this probability with the normal standard table or with excel: using the complement rule
[tex]P(z>1.143)=1-P(Z<1.143) =1-0.873=0.127[/tex]
Part c
[tex]P(173<X<193)[/tex]
And the best way to solve this problem is using the normal standard distribution and the z score given by:
[tex]z=\frac{x-\mu}{\sigma}[/tex]
If we apply this formula to our probability we got this:
[tex]P(173<X<193)=P(\frac{173-\mu}{\sigma}<\frac{X-\mu}{\sigma}<\frac{193-\mu}{\sigma})=P(\frac{173-183}{10.5}<Z<\frac{193-183}{10.5})=P(-0.952<z<0.953)[/tex]And we can find this probability on this way:
[tex]P(-0.953<z<0.953)=P(z<0.953)-P(z<-0.953)[/tex]
And in order to find these probabilities we can use tables for the normal standard distribution, excel or a calculator.
[tex]P(-0.953<z<0.953)=P(z<0.953)-P(z<-0.953)=0.830-0.170=0.660[/tex]Part d
Since the distributiion for X is normal then the distribution for the sample mean is also normal and given by:
[tex]\bar X \sim N(\mu, \frac{\sigma}{\sqrt{n}})[/tex]
And we eant this probability:
[tex]P(\bar X >190)=P(Z>\frac{190-183}{\frac{10.5}{\sqrt{1000}}}=21.08)[/tex]
And using a calculator, excel ir the normal standard table we have that:
[tex]P(Z>21.08)=1-P(Z<21.08) \approx 0[/tex]
So for this case we expect anyone with a heigth higher than 190 cm in a random sample of 1000.