Respuesta :
Answer:
It takes 6.37 revolutions to stop.
Explanation:
The constant angular acceleration is negative if we choose the wheel direction of rotation as positive direction, so radial acceleration is α=5.0[tex] \frac{rad}{s^{2}}[/tex].Because the wheel is changing its velocity and we already know radial acceleration we should use the Galileo's kinematic rotational equation:
[tex]\omega^{2}=\omega_{i}^{2}+2\alpha\varDelta\theta [/tex]
with [tex] \omega[/tex] the final angular velocity (is zero because the wheel comes to rest), [tex] \omega_{i}[/tex] the initial angular velocity and Δθ the angular displacement. Solving (1) for Δθ :
[tex]\varDelta\theta=\frac{\omega^{2}-\omega_{i}^{2}}{2\alpha} [/tex]
[tex]\varDelta\theta=\frac{0-20^{2}}{(2)(-5.0)}=40rad [/tex]
The angular displacement can be converted to revolution knowing that 1 revolution is 2π rad:
[tex]40rad=\frac{40rad}{2\pi\frac{rad}{rev}} [/tex]
[tex] 40rad=6.37 rev[/tex]
Number of revolution take place is 6.4 revolution
Given that;
Velocity of rotating wheel = 20 rad/s
Acceleration of magnitude = 5.0 rad/s²
Find:
Number of revolution take place
Computation:
Using Third equation of motion;
v² - u² = 2as
20² - 0² = 2(5)(s)
400 = (10)(s)
Total distance = 40 rad
Number of revolution take place = Total distance / 2π
Number of revolution take place = 40 / 2(3.14)
Number of revolution take place = 40 / 6.28
Number of revolution take place = 6.369
Number of revolution take place = 6.4 revolution
Learn more:
https://brainly.com/question/17773408?referrer=searchResults