Answer: 0.332 < p < 0.490
Step-by-step explanation:
We know that the confidence interval for population proportion is given by :-
[tex]\hat{p}\pm z^*\sqrt{\dfrac{\hat{p}(1-\hat{p})}{n}}[/tex]
, where n= sample size
[tex]\hat{p}[/tex] = sample proportion
z* = critical z-value.
As per given , we have
n= 258
Sample proportion of college students who own a car = [tex]\hat{p}=\dfrac{106}{258}\approx0.411[/tex]
Critical z-value for 99% confidence interval is 2.576. (By z-table)
Therefore , the 99% confidence interval for the true proportion(p) of all college students who own a car will be :[tex]0.411\pm (2.576)\sqrt{\dfrac{0.411(1-0.411)}{258}}\\\\=0.411\pm (2.576)\sqrt{0.00093829}\\\\= 0.411\pm (2.576)(0.0306315197142)\\\\=0.411\pm 0.0789=(0.411-0.0789,\ 0.411+0.0789)\\\\=(0.3321,\ 0.4899)\approx(0.332,\ 0.490)[/tex]
Hence, a 99% confidence interval for the true proportion of all college students who own a car : 0.332 < p < 0.490