Answer:
0.02896 kg/s
Explanation:
[tex]A_1[/tex] = Initial displacement = 0.5 m
[tex]A21[/tex] = Final displacement = 0.1 m
t = Time taken = 0.5 s
m = Mass of object = 45 g
Displacement is given by
[tex]x=Ae^{-\dfrac{b}{2m}t}cos(\omega t+\phi)[/tex]
At maximum displacement
[tex]cos(\omega t+\phi)=1[/tex]
[tex]\\\Rightarrow A_2=A_1e^{-\dfrac{b}{2m}t}\\\Rightarrow \dfrac{A_1}{A_2}=e^{\dfrac{b}{2m}t}\\\Rightarrow ln\dfrac{A_1}{A_2}=\dfrac{b}{2m}t\\\Rightarrow b=\dfrac{2m}{t}\times ln\dfrac{A_1}{A_2}\\\Rightarrow b=\dfrac{2\times 0.045}{5}\times ln\dfrac{0.5}{0.1}\\\Rightarrow b=0.02896\ kg/s[/tex]
The magnitude of the damping coefficient is 0.02896 kg/s