p (6,6) y=2/3x

i need a equation of the line perpendicular to the given line that contains P ( can anybody answer the full problem (showing work for 35 points) ??

Respuesta :

Answer:

[tex]y = -\frac{3}{2}x+15[/tex]

Step-by-step explanation:

Given:

Given point P(6, 6)

The equation of the line.

[tex]y = \frac{2}{3}x[/tex]

We need to find the equation of the line perpendicular to the given line that contains P

Solution:

The equation of the line.

[tex]y = \frac{2}{3}x[/tex]

Now, we compare the given equation by standard form [tex]y = mx +c[/tex]

So, slope of the line [tex]m_{1} = \frac{2}{3}[/tex], and

y-intercept [tex]c=0[/tex]

We know that the slope of the perpendicular line [tex]m_{1}\times m_{2} = -1[/tex]

[tex]m_{2}=-\frac{1}{m_{1}}[/tex]

[tex]m_{2}=-\frac{1}{\frac{2}{3} }[/tex]

[tex]m_{2}=-\frac{3}{2}[/tex]

So, the slope of the perpendicular line [tex]m_{2}=-\frac{3}{2}[/tex]

From the above statement, line passes through the point P(6, 6).

Using slope intercept formula to know y-intercept.

[tex]y=mx+c[/tex]

Substitute point [tex]P(x_{1}, y_{1})=P(6, 6)[/tex] and [tex]m = m_{2}=-\frac{3}{2}[/tex]

[tex]6=-\frac{3}{2}\times 6 +c[/tex]

[tex]6=-3\times 3 +c[/tex]

[tex]c=6+9[/tex]

[tex]c=15[/tex]

So, the y-intercept of the perpendicular line [tex]c=15[/tex]

Using point slope formula.

[tex]y=mx+c[/tex]

Substitute [tex]m = m_{2}=-\frac{3}{2}[/tex] and [tex]c=15[/tex] in above equation.

[tex]y = -\frac{3}{2}x+15[/tex]

Therefore: the equation of the perpendicular line [tex]y = -\frac{3}{2}x+15[/tex]

ACCESS MORE
EDU ACCESS