Respuesta :
Answer:
a) 1+2+3+4+...+396+397+398+399=79800
b) 1+2+3+4+...+546+547+548+549=150975
c) 2+4+6+8+...+72+74+76+78=1560
Step-by-step explanation:
We know that a summation formula for the first n natural numbers:
1+2+3+...+(n-2)+(n-1)+n=\frac{n(n+1)}{2}
We use the formula, we get
a) 1+2+3+4+...+396+397+398+399=\frac{399·(399+1)}{2}=\frac{399· 400}{2}=399· 200=79800
b) 1+2+3+4+...+546+547+548+549=\frac{549·(549+1)}{2}=\frac{549· 550}{2}=549· 275=150975
c)2+4+6+8+...+72+74+76+78=S / ( :2)
1+2+3+4+...+36+37+38+39=S/2
\frac{39·(39+1)}{2}=S/2
\frac{39·40}{2}=S/2
39·40=S
1560=S
Therefore, we get
2+4+6+8+...+72+74+76+78=1560
The sum of the given series are:
(a) 79800
(b) 150975
(c) 1560
(a)
Given:
- [tex]1 + 2 + 3 + 4 + . . . + 396 + 397 + 398 + 399[/tex]
As we know the formula,
- [tex]1+2+3+...+n = \frac{n(n+1)}{2}[/tex]
The sum will be:
= [tex]\frac{399(399+1)}{2}[/tex]
= [tex]\frac{399\times 400}{2}[/tex]
= [tex]399\times 200[/tex]
= [tex]79800[/tex]
(b)
Given:
- [tex]1 + 2 + 3 + 4 + . . . + 546 + 547 + 548 + 549[/tex]
The sum will be:
= [tex]\frac{549(549+1)}{2}[/tex]
= [tex]\frac{549\times 550}{2}[/tex]
= [tex]549\times 275[/tex]
= [tex]150975[/tex]
(c)
Given:
- [tex]2 + 4 + 6 + 8 + . . . + 72 + 74 + 76 + 78[/tex]
Thu sum will be:
= [tex]2(1+2+3+4+...+36+37+38+39)[/tex]
= [tex]2\times {\frac{39(39+1)}{2} }[/tex]
= [tex]39\times 40[/tex]
= [tex]1560[/tex]
Thus the above answers are correct.
Learn more:
https://brainly.com/question/17367499