The similarity ratio of ΔABC to ΔDEF = 2 : 1.
Solution:
The image attached below.
Given ΔABC to ΔDEF are similar.
To find the ratio of similarity triangle ABC and triangle DEF.
In ΔABC: AC = 4 and CB = 5
In ΔDEF: DF = 2, EF = ?
Let us first find the length of EF.
We know that, If two triangles are similar, then the corresponding sides are proportional.
⇒ [tex]\frac{AC}{DF} =\frac{BC}{EF}[/tex]
⇒ [tex]\frac{4}{2} =\frac{5}{EF}[/tex]
⇒ [tex]4EF=5\times2[/tex]
⇒ [tex]EF=\frac{5\times 2}{4}[/tex]
⇒ [tex]EF=\frac{5}{2}[/tex]
Ratio of ΔABC to ΔDEF = [tex]\frac{AC}{DF} =\frac{4}{2}=\frac{2}{1}[/tex]
Similarly, ratio of ΔABC to ΔDEF = [tex]\frac{BC}{EF} =\frac{5}{\frac{5}{2}}=\frac{2}{1}[/tex]
Hence, the similarity ratio of ΔABC to ΔDEF = 2 : 1.