Respuesta :

The similarity ratio of ΔABC to ΔDEF = 2 : 1.

Solution:

The image attached below.

Given  ΔABC to ΔDEF are similar.

To find the ratio of similarity triangle ABC and triangle DEF.

In ΔABC: AC = 4 and CB = 5

In ΔDEF: DF = 2, EF = ?

Let us first find the length of EF.

We know that, If two triangles are similar, then the corresponding sides are proportional.

⇒ [tex]\frac{AC}{DF} =\frac{BC}{EF}[/tex]

⇒ [tex]\frac{4}{2} =\frac{5}{EF}[/tex]

⇒ [tex]4EF=5\times2[/tex]

⇒ [tex]EF=\frac{5\times 2}{4}[/tex]

⇒ [tex]EF=\frac{5}{2}[/tex]

Ratio of ΔABC to ΔDEF = [tex]\frac{AC}{DF} =\frac{4}{2}=\frac{2}{1}[/tex]

Similarly, ratio of ΔABC to ΔDEF = [tex]\frac{BC}{EF} =\frac{5}{\frac{5}{2}}=\frac{2}{1}[/tex]

Hence, the similarity ratio of ΔABC to ΔDEF = 2 : 1.

Ver imagen shilpa85475
ACCESS MORE
EDU ACCESS
Universidad de Mexico