Answer:
The vaues to the given equations are x=-2 and y=-4
Therefore the solution set is (-2,-4)
Step-by-step explanation:
Given equations are [tex]3x+3y=-18\hfill (1)[/tex]
[tex]-2x+2y=-4\hfill (2)[/tex]
To solve the given equation to find the solution set :
Multiply the equation (1) into 2 we get
[tex]6x+6y=-36\hfill (3)[/tex]
Multiply the equation (2) into 3 we get
[tex]-6x+6y=-12\hfill (4)[/tex]
Now adding the equations (3) and (4) we get
[tex]6x+6y=-36[/tex]
[tex]-6x+6y=-12[/tex]
________________
[tex]12y=-48[/tex]
[tex]y=\frac{-48}{12}[/tex]
Therefore y=-4
Substitute the value of y=-4 in the equation (1) we get
[tex]3x+3y=-18[/tex]
[tex]3x+3(-4)=-18[/tex]
3x-12=-18
3x-12+12=-18+12
3x=-6
[tex]x=\frac{-6}{3}[/tex]
Therefore x=-2
The vaues to the given equations are x=-2 and y=-4
Therefore the solution set is (-2,-4)