Respuesta :
Answer:
[tex]\vec{v} = <-11,15.08,-5>[/tex]
Explanation:
given,
location of the ball ⟨7,0,−8⟩
initial velocity of the ball ⟨-11,19,−5⟩
time = 0.4 s
speed of the ball = ?
using Momentum Principle
change in momentum = Force x time
[tex]m \vec{v} - m \vec{u}= \vec{F}\times \Delta t[/tex]
[tex]\vec{v} =\vec{u} + \dfrac{\vec{F}}{m}\times \Delta t[/tex]
Net force acting in this case will be equal to force due to gravity because air resistance is negligible.
F_net = F_g = ⟨0 ,-9.8 m , 0⟩
now,
[tex]\vec{v} = <-11,19,-5>+ \dfrac{<0 ,-9.8 m , 0>}{m}\times (0.4-0)[/tex]
[tex]\vec{v} = <-11,19,-5>+ <0 ,-3.92 , 0>[/tex]
[tex]\vec{v} = <-11,15.08,-5>[/tex]
hence, the velocity of the ball 0.4 s after being kicked is equal to [tex]\vec{v} = <-11,15.08,-5>[/tex]
The velocity of the ball 0.4 seconds after being kicked is; v = (-11, 15.08, -5) m/s
Velocity Vector
We are given;
- Location of the ball = (7,0,−8)
- Initial velocity of the ball = (-11, 19, −5)
- Time = 0.4 s
From the Momentum Principle, we know that;
Change in momentum = Impulse
Thus;
m(v - u) = F * Δt
Divide through by m and make v the subject to get;
v = u + [(F/m)Δt]
In this question, due to the fact that air resistance is negligible, the net force acting will be equal to force due to gravity. Thus;
F_net = F_g = mg
Since acceleration due to gravity is 9.8 m/s², then;
F = (0, -9.8m, 0)
Thus;
v = (-11, 19, −5) + [((0, -9.8m, 0)/m) * (0.4 - 0)]
v = (-11, 19, −5) + (0, -3.92m, 0)
v = (-11, 15.08, -5) m/s
Read more about Velocity Vectors at; https://brainly.com/question/13597325