Respuesta :
Answer:
The wavelength of the first harmonic is 155.4 cm.
Explanation:
Given that,
The separation between a stretched string that is fixed at both ends, l = 77.7 cm
The density of the string, [tex]d=0.014\ g/cm^3[/tex]
Tension in the string, T = 600 N
We need to find the wavelength of the first harmonic. The wavelength of the nth harmonic on the string that is fixed at both ends is given by :
[tex]\lambda=\dfrac{2l}{n}[/tex]
Here, n = 1
[tex]\lambda=2l[/tex]
[tex]\lambda=2\times 77.7[/tex]
[tex]\lambda=155.4\ cm[/tex]
So, the wavelength of the first harmonic is 155.4 cm. Hence, this is the required solution.
The wavelength of the first harmonic will be "155.4 cm".
Wavelength and Density
According to the question,
Separation between stretched string, I = 77.7 cm
String's density, d = 0.014 g/cm³
String's tension, T = 600 N
We know the relation,
Wavelength, λ = [tex]\frac{2l}{n}[/tex]
here, n = 1
then, λ = 2l
By substituting the values,
= 2 × 77.7
= 155.4 cm
Thus the above answer is appropriate.
Find out more information about wavelength here:
https://brainly.com/question/14237669