Answer:
[tex]\displaystyle \theta' =0.24\ rad/s[/tex]
Explanation:
Rate Of Change
Let some variable y depend on time t. we can express y as a function of t as
[tex]y=f(t)[/tex]
The instant rate of change of y respect to t is the first derivative, i.e.
[tex]y'=f'(t)[/tex]
The balloon, the ground and the observer form a right triangle (shown below) where the height of the balloon y, the horizontal distance x, and the angle of elevation are related with the trigonometric formula
[tex]\displaystyle tan\theta =\frac{y}{x}[/tex]
Since x is constant, we take the derivative with respect to time by using the chain rule:
[tex]\displaystyle sec^2\theta \ \theta' =\frac{y'}{x}[/tex]
Solving for [tex]\theta'[/tex]
[tex]\displaystyle \theta' =\frac{y'}{xsec^2\theta}[/tex]
Let's compute the actual angle with the initial conditions y=9 feet, x=12 feet
[tex]\displaystyle tan\theta =\frac{y}{x}[/tex]
[tex]\displaystyle tan\theta =\frac{9}{12}=\frac{3}{4}[/tex]
Knowing that
[tex]\sec^2\theta=1+tan^2\theta[/tex]
[tex]\displaystyle \sec^2\theta=1+\left(\frac{3}{4}\right)^2[/tex]
[tex]\displaystyle \sec^2\theta=\frac{25}{16}[/tex]
The balloon is rising at y'=8 feet/sec, thus we compute the change of the angle of elevation:
[tex]\displaystyle \theta' =\frac{8}{12\ \frac{25}{16}}[/tex]
[tex]\displaystyle \theta' =\frac{32}{75}\ rad/s[/tex]
[tex]\boxed{\displaystyle \theta' =0.43\ rad/s}[/tex]