Answer:
[tex]volume\ = \pi \frac{625^2}{6}[/tex]
Step-by-step explanation:
See the attached figure.
y₁ = 25x and y₂ =x²
The intersection between y₁ and y₂
25x = x²
x² - 25x = 0
x(x-25) = 0
x = 0 or x =25
y = 0 or y =25² = 625
The points of intersection (0,0) and (25,625)
To find the volume of the solid obtained by rotating about the y-axis the region bounded by y₁ and y₂
y₁ = 25x ⇒ x₁ = y/25 ⇒ x₁² = y²/625
y₂ =x² ⇒ x₂ = √y ⇒ x₂² = y
v = ∫A(y) dy = π ∫ (x₂² - x₁²) dy
∴ V =
[tex]\pi \int\limits^{625}_0 {y-\frac{y^2}{625} } \, dy =\pi( \frac{y^2}{2} -\frac{y^3}{3*625} ) =\pi (\frac{625^2}{2} -\frac{625^3}{3*625}) =\pi ( \frac{625^2}{2}-\frac{625^2}{3}) =\pi \frac{625^2}{6}[/tex]