Answer:
[tex]\dfrac{F}{L}=\dfrac{\mu_oI^2}{2\pi d}[/tex]
Explanation:
If the current flowing in two wires is I and they are separated by a distance of d. We know that the magnetic field due to a wire is given by :
[tex]B=\dfrac{\mu_oI}{2\pi d}[/tex]
Where
d is the separation between wires
The magnetic force between the wires is given by :
[tex]F=BIL[/tex]
I is the current in wire
L is the length of the wires
[tex]F=\dfrac{\mu_oI^2L}{2\pi d}[/tex]
The magnetic force per unit length is given by :
[tex]\dfrac{F}{L}=\dfrac{\mu_oI^2}{2\pi d}[/tex]
So, the force per unit length F/L between the two wires is [tex]\dfrac{\mu_oI^2}{2\pi d}[/tex]. Hence, this is the required solution.