Answer:
[tex]\frac{25}{3}ft/s[/tex]
Explanation:
Height of man= 6ft
Height of light=1 5ft
Let BC=x and CD=y
BD=x+y
Triangle ABD and ECD are similar
When two triangles are similar then the ratio of their corresponding sides are equal
[tex]\frac{AB}{EC}=\frac{BD}{CD}[/tex]
[tex]\frac{15}{6}=\frac{x+y}{y}[/tex]
[tex]\frac{5}{2}=\frac{x+y}{y}[/tex]
[tex]5y=2x+2y[/tex]
[tex]5y-2y=2x[/tex]
[tex]3y=2x[/tex]
Differentiate w.r.t t
[tex]2\frac{dx}{dt}=3\frac{dy}{dt}[/tex]
We have [tex]\frac{dx}{dt}=5ft/s[/tex]
Substitute the value then we get
[tex]2\times 5=3\frac{dy}{dt}[/tex]
[tex]\frac{dy}{dt}=\frac{2\times 5}{3}=10/3ft/s[/tex]
Rate at which the tip of shadow is moving=[tex]\frac{dx}{dt}+\frac{dy}{dt}[/tex]
Rate at which the tip of shadow is moving=[tex]5+\frac{10}{3}=\frac{15+10}{3}ft/s[/tex]
Rate at which the tip of shadow is moving=[tex]\frac{25}{3}ft/s[/tex]