Answer:
E2/E1 =99.2
Explanation:
time after release of E1 (t) = 27.3 s
time after release of E2 (t') = 3.03 s
acceleration (a) = [tex]\frac{QE1}{M}[/tex]
where
after 27.3 s
velocity (V) = a x t = [tex]\frac{QE1}{M}[/tex] x 27.3 = [tex]\frac{27.3QE1}{M}[/tex]
distance to turning point (s) = 0.5a[tex]t^{2}[/tex] = 0.5 x [tex]\frac{QE1}{M}[/tex]x [tex]27.3^{2}[/tex] = [tex]\frac{372.65QE1}{M}[/tex]
now for its return back to its starting point
acceleration (a') = [tex]-\frac{QE2}{M}[/tex]
total distance S' = distance to turning point + distance from turning point to starting point
S' = S + vt' + 0.5 a'[tex]t'^{2}[/tex]
S' = [tex]\frac{372.65QE1}{M}[/tex] + ([tex]\frac{27.3QE1}{M}[/tex] x 3.03) + (0.5 x [tex]-\frac{QE2}{M}[/tex]x [tex]3.03^{2}[/tex])
S' is the distance at the starting point and = 0
0 = [tex]\frac{372.65QE1}{M} + \frac{82.72QE1}{M}-\frac{4.59QE2}{M}[/tex]
[tex]\frac{4.59QE2}{M}=\frac{372.65QE1}{M} + \frac{82.72QE1}{M}[/tex]
multiplying both side by M/Q we have
4.59.E2 = 372.65E1 + 82.72E1
4.59.E2 = 455.37E1
E2/E1 = 455.37 / 4.59
E2/E1 =99.2