Answer:
The solved expression is [tex]x=3+\sqrt{2}[/tex] and [tex]x=3-\sqrt{2}[/tex]
Therefore [tex]x=3\pm\sqrt{2}[/tex]
Step-by-step explanation:
Given quadratic equation is [tex]x^2-6x+7=0[/tex]
To solve the given equation by using completing the square :
[tex]x^2-6x+7=0[/tex]
Rewritting the above equation as below :
[tex]x^2-6x+7+2-2=0[/tex]
[tex](x^2-6x+7+2)-2=0[/tex]
[tex](x^2-6x+9)-2=0[/tex]
[tex](x^2-6x+3^2)-2=0[/tex]
[tex](x^2-2(x)(3)+3^2)-2=0[/tex] ( it is of the form of [tex](a-b)^2=a^2-2ab+b^2[/tex] heere a=x and b=3 )
[tex](x-3)^2-2=0[/tex]
[tex](x-3)^2=2[/tex]
Taking square root on both sides we get
[tex]\sqrt{(x-3)^2}=\pm\sqrt{2}[/tex]
[tex]x-3=\pm\sqrt{2}[/tex]
[tex]x=\pm\sqrt{2}+3[/tex]
[tex]x=3\pm\sqrt{2}[/tex]
Therefore [tex]x=3+\sqrt{2}[/tex] and [tex]x=3-\sqrt{2}[/tex]