To solve this problem we will define the data obtained in each of the sections. We know that the Net Force is equivalent to the Force in section 1, which can be found through mass flow and velocity, plus the force in section two, which can be found as the product between pressure and Area, so therefore we have
State 1:
[tex]\dot{m} = 200kg/s[/tex]
[tex]v_1 = 150m/s[/tex]
[tex]P_1 = 1600kPa[/tex]
State 2
[tex]v_2 = 2300m/s[/tex]
[tex]A_2 = 2.4m^2[/tex]
[tex]P_2 = 80kPa[/tex]
We have that net force is equal to
[tex]F_{net} = F_1 + F_2[/tex]
[tex]F_1 = \dot{m} (v_2-v_1)[/tex]
[tex]F_2 = (P_1-p_2)A_2[/tex]
Replacing,
[tex]F = \dot{m} (v_2-v_1) + (P_1-p_2)A_2[/tex]
[tex]F = 200(2300-150)+(1600-80)*10^3(2.4)[/tex]
[tex]F = 4078kN[/tex]
Therefore the thrust force acting on the nozzle is 4078kN