given the function g(x)= 2x2+6 find the indicated value

g(-10) = 206, g(-1) = 8, g([tex]\frac{1}{2}[/tex]) = 6.5
Step-by-step explanation:
Step 1; Take the values given as values of x. The values of x are -10, -1 and [tex]\frac{1}{2}[/tex]. We substitute these values in the function g(x). In the function g(x) we substitute the values of -10, -1, [tex]\frac{1}{2}[/tex] in the place of x in g(x). So for g(-10) we substitute the value of -10 in the place of x and get g(-10). Similarly, we do for the other two values and find g(-1) and g([tex]\frac{1}{2}[/tex]).
Step 2; Substituting the values in the function we get
g(-10) = [tex]2(-10)^{2}[/tex] + 6 = 2(100) + 6 = 206
g(-1) = [tex]2(-1)^{2}[/tex] + 6 = 2(1) + 6 = 8
g([tex]\frac{1}{2}[/tex]) = [tex]2\frac{1}{2} ^{2}[/tex] + 6 = 2[tex]\frac{1}{4}[/tex] + 6 = 0.5 + 6 = 6.5.