There are 5 shifts per day
Solution:
Given that, A swimming pool is open for [tex]7\frac{1}{2}[/tex] hours a day
The pool keeps one life guard on duty at a time
Each life guard shift is [tex]1\frac{1}{2}[/tex] hours long
To find: Number of shifts per day
From given,
[tex]\text{ Number of hours } =7\frac{1}{2} = \frac{2 \times 7 + 1}{2} = \frac{15}{2}[/tex]
[tex]\text{Each life guard shift }= 1\frac{1}{2} = \frac{3}{2} \text{ hours }[/tex]
Therefore, number of shifts per day is found by dividing total number of hours by hours of each life guard shift
[tex]\text{Number of shifts per day } = \frac{\text{Total number of hours}}{\text{each life guard shift }}[/tex]
Substituting the values we get,
[tex]\text{Number of shifts per day } = \frac{\frac{15}{2}}{\frac{3}{2}}\\\\\text{Number of shifts per day } = \frac{15}{2} \times \frac{2}{3}\\\\\text{Number of shifts per day } = 5[/tex]
Thus there are 5 shifts per day