Respuesta :
Answer:
[tex]x=-7\pm8i[/tex]
Step-by-step explanation:
we have
[tex]x^{2} +14x+17=-96[/tex]
Equate to zero
[tex]x^{2} +14x+17+96=0[/tex]
[tex]x^{2} +14x+113=0[/tex]
The formula to solve a quadratic equation of the form
[tex]ax^{2} +bx+c=0[/tex]
is equal to
[tex]x=\frac{-b\pm\sqrt{b^{2}-4ac}} {2a}[/tex]
in this problem we have
[tex]x^{2} +14x+113=0[/tex]
so
[tex]a=1\\b=14\\c=113[/tex]
substitute in the formula
[tex]x=\frac{-14\pm\sqrt{14^{2}-4(1)(113)}} {2(1)}[/tex]
[tex]x=\frac{-14\pm\sqrt{-256}} {2}[/tex]
Remember that
[tex]i=\sqrt{-1}[/tex]
so
[tex]x=\frac{-14\pm16i} {2}[/tex]
[tex]x=-7\pm8i[/tex]
Otras preguntas
