Respuesta :
Answer:
B. and C.
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Integration
- Integrals
- Indefinite Integrals
- Integration Constant C
U-Substitution
Step-by-step explanation:
*Note:
It seems like B and C are both the same answer.
Let's define our answer choices:
a. [tex]\displaystyle \int {\sqrt{x - 1}} \, dx[/tex]
b. [tex]\displaystyle \int {\frac{1}{\sqrt{1 - x^2}}} \, dx[/tex]
c. [tex]\displaystyle \int {\frac{1}{\sqrt{1 - x^2}}} \, dx[/tex]
d. [tex]\displaystyle \int {x\sqrt{x^2 - 1}} \, dx[/tex]
Let's run u-substitution through each of the answer choices:
a. [tex]\displaystyle u = x - 1 \rightarrow du = dx \ \checkmark[/tex]
∴ answer choice A can be evaluated with a simple substitution.
b. [tex]\displaystyle u = 1 - x^2 \rightarrow du = -2x \ dx[/tex]
We can see that this integral cannot be evaluated with a simple substitution. In fact, this is a setup for an arctrig integral.
∴ answer choice B cannot be evaluated using a simple substitution.
C. [tex]\displaystyle u = 1 - x^2 \rightarrow du = -2x \ dx[/tex]
We can see that this integral cannot be evaluated with a simple substitution. In fact, this is a setup for an arctrig integral.
∴ answer choice C cannot be evaluated using a simple substitution.
D. [tex]\displaystyle u = x^2 - 1 \rightarrow du = 2x \ dx \ \checkmark[/tex]
Using a little rewriting and integration properties, this integral can be evaluated using a simple substitution.
∴ answer choice D can be evaluated using a simple substitution.
Out of all the choices, we see that B and C cannot be evaluated using a simple substitution.
∴ our answer choices should be B and C.
Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Integration
Book: College Calculus 10e