Respuesta :
Answer:
Before redundancy :100101011100
After checking parity redundancy: 100101010011
Explanation:
First calculate redundant bits ,
We know that the number of redundant bits can be calculated using the following formula:
2^r ≥ m + r + 1
r = redundant bit, m = data bit
total data bits = 8
so ,
2^4 ≥ 8 + 4 + 1
16 ≥ 13
so, redundant bits is 4
Now let they denoted by r1, r2, r4, and r8, as the redundant bits are placed at positions corresponding to power of 2: Â Â 1, 2, 4, and 8. Â
All the redundant bits are initialized by zero.
For the data word 10011011, we can let  the bits of the data word as  w8,w7, w6, w5, w4, w3, w2, w1
Now , put data bits and redundancy bits  as follows.
d12 Â d11 Â d10 Â d9 Â d8 Â d7 Â d6 Â d5 Â d4 Â d3 Â d2 Â d1
w8 Â w7 Â w6 Â w5 Â r8 Â w4 Â w3 Â w2 r4 Â w1 Â r2 Â r1
 1    0   0    1    0   1   0   1   0   0   0  0
r1 = d1  xor  d3  xor d5  xor d7  xor  d9  xor d11
r1 =  0  xor  0  xor 1  xor 1  xor  1  xor 0
r1 = Â 1
r2 = d2  xor  d3  xor d6  xor d7  xor  d10  xor d11
r2 = 0  xor  0  xor 0  xor 1  xor  0  xor 0
r2 = 1
r4 = d4  xor  d5  xor d6  xor d7 Â
r4 = 0  xor  1  xor 0  xor 1
r4 = 0
r8 = d8  xor  d9  xor d10  xor d11  xor d12
r8 = 0  xor  1  xor 0  xor 0 xor  1
r8 = 0
So, the data transferred is
d12 Â d11 Â d10 Â d9 Â d8 Â d7 Â d6 Â d5 Â d4 Â d3 Â d2 Â d1
w8 Â w7 Â w6 Â w5 Â r8 Â w4 Â w3 Â w2 r4 Â w1 Â r2 Â r1
 1    0   0    1    0   1   0   1   0   0   1  1
The bits give the binary number as 0011 whose decimal representation is 3. Thus, the bit 3 contains an error. To correct the error the 3th bit is changed from 1 to 0.
Otras preguntas
