Respuesta :
Answer:
[tex]\displaystyle \oint_C {y^2x \, dx + 9x^2y \, dy} = \boxed{\bold{4}}[/tex]
General Formulas and Concepts:
Calculus
Differentiation
- Derivatives
- Derivative Notation
Derivative Property [Multiplied Constant]:
[tex]\displaystyle \bold{(cu)' = cu'}[/tex]
Derivative Rule [Basic Power Rule]:
- f(x) = cxⁿ
- f’(x) = c·nxⁿ⁻¹
Integration
- Integrals
Integration Rule [Fundamental Theorem of Calculus 1]:
[tex]\displaystyle \bold{\int\limits^b_a {f(x)} \, dx = F(b) - F(a)}[/tex]
Integration Property [Multiplied Constant]:
[tex]\displaystyle \bold{\int {cf(x)} \, dx = c \int {f(x)} \, dx}[/tex]
Multivariable Calculus
Partial Derivatives
Vector Calculus
Circulation Density:
[tex]\displaystyle \bold{F = M \hat{\i} + N \hat{\j} \rightarrow \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y}}[/tex]
Green's Theorem [Circulation Curl/Tangential Form]:
[tex]\displaystyle \bold{\oint_C {F \cdot T} \, ds = \oint_C {M \, dx + N \, dy} = \iint_R {\bigg( \frac{\partial N}{\partial x} - \frac{\partial M}{\partial y} \bigg)} \, dx \, dy}[/tex]
Step-by-step explanation:
Step 1: Define
Identify given.
[tex]\displaystyle \oint_C {y^2x \, dx + 9x^2y \, dy}[/tex]
[See Graph Attachment] Points (0, 0) → (1, 0) → (1, 1) → (0, 1)
↓
[tex]\displaystyle \text{Region:} \left \{ {{0 \leq x \leq 1} \atop {0 \leq y \leq 1}} \right.[/tex]
Step 2: Integrate Pt. 1
- Define vector functions M and N:
[tex]\displaystyle M = y^2x , \ N = 9x^2y[/tex] - [Circulation Density] Differentiate [Derivative Rules and Properties]:
[tex]\displaystyle \frac{\partial M}{\partial y} = 2yx , \ \frac{\partial N}{\partial x} = 18xy[/tex] - [Green's Theorem] Substitute in Circulation Density:
[tex]\displaystyle \oint_C {y^2x \, dx + 9x^2y \, dy} = \iint_R {18xy - 2xy} \, dx \, dy[/tex] - Simplify:
[tex]\displaystyle \oint_C {y^2x \, dx + 9x^2y \, dy} = \iint_R {16xy} \, dx \, dy[/tex] - [Integrals] Substitute in region R:
[tex]\displaystyle \oint_C {y^2x \, dx + 9x^2y \, dy} = \int\limits^1_0 \int\limits^1_0 {16xy} \, dx \, dy[/tex]
Step 3: Integrate Pt. 2
We can evaluate the Green's Theorem double integral we found using basic integration techniques listed above:
[tex]\displaystyle \begin{aligned}\oint_C {y^2x \, dx + 9x^2y \, dy} & = \int\limits^1_0 \int\limits^1_0 {16xy} \, dx \, dy \\& = \int\limits^1_0 {8x^2y \bigg| \limits^{x = 1}_{x = 0}} \, dy \\& = \int\limits^1_0 {8y} \, dy \\& = 4y^2 \bigg| \limits^{y = 1}_{y = 0} \\& = \boxed{\bold{4}}\end{aligned}[/tex]
∴ we have evaluated the line integral using Green's Theorem.
---
Learn more about Green's Theorem: https://brainly.com/question/17186812
Learn more about multivariable calculus: https://brainly.com/question/14502499
---
Topic: Multivariable Calculus
Unit: Green's Theorem and Surfaces
