Answer:
[tex]v_{avg}=29.499\ m.s^{-1}[/tex]
Explanation:
Given:
distance as a function of time is:
[tex]s=e^t+2-sin\ t[/tex]
Average velocity of the particle from time t=1s to t=5s can be given by the total distance covered divided by the total time consumed.
Position at t=1s:
[tex]s_1=e^1+2-sin\ 1[/tex]
[tex]s_1=3.8768\ m[/tex]
Position at t=5s:
[tex]s_5=e^5+2-sin\ 5[/tex]
[tex]s_5=151.3721\ m[/tex]
Therefore the distance covered during this time is:
[tex]\Delta s=s_5-s_1[/tex]
[tex]\Delta s=151.3721-3.8768[/tex]
[tex]\Delta s =147.4952\ m[/tex]
Now the average speed for the duration:
[tex]v_{avg}=\frac{\Delta s}{\Delta t}[/tex]
[tex]v_{avg}=\frac{147.4952}{5}[/tex]
[tex]v_{avg}=29.499\ m.s^{-1}[/tex]