At time t in seconds a particles distance s(t) in micrometers from a point is given by s(t)=e^t+2-sin(t) what is the average velocity of the particle from t=1 to t=5

Respuesta :

Answer:

[tex]v_{avg}=29.499\ m.s^{-1}[/tex]

Explanation:

Given:

distance as a function of time is:

[tex]s=e^t+2-sin\ t[/tex]

Average velocity of the particle from time t=1s to t=5s can be given by the total distance covered divided by the total time consumed.

Position at t=1s:

[tex]s_1=e^1+2-sin\ 1[/tex]

[tex]s_1=3.8768\ m[/tex]

Position at t=5s:

[tex]s_5=e^5+2-sin\ 5[/tex]

[tex]s_5=151.3721\ m[/tex]

Therefore the distance covered during this time is:

[tex]\Delta s=s_5-s_1[/tex]

[tex]\Delta s=151.3721-3.8768[/tex]

[tex]\Delta s =147.4952\ m[/tex]

Now the average speed for the duration:

[tex]v_{avg}=\frac{\Delta s}{\Delta t}[/tex]

[tex]v_{avg}=\frac{147.4952}{5}[/tex]

[tex]v_{avg}=29.499\ m.s^{-1}[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico