Respuesta :
Answer:
a) [tex] v = \frac{[L]}{[T]} = LT^{-1}[/tex]
b) [tex] a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}[/tex]
c) [tex] \int v dt = s(t) = [L]=L[/tex]
d) [tex] \int a dt = v(t) = [L][T]^{-1}=LT^{-1}[/tex]
e) [tex] \frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}[/tex]
Step-by-step explanation:
Let define some notation:
[L]= represent longitude , [T] =represent time
And we have defined:
s(t) a position function
[tex] v = \frac{ds}{dt}[/tex]
[tex] a= \frac{dv}{dt}[/tex]
Part a
If we do the dimensional analysis for v we got:
[tex] v = \frac{[L]}{[T]} = LT^{-1}[/tex]
Part b
For the acceleration we can use the result obtained from part a and we got:
[tex] a = \frac{[L}{T}^{-1}]}{{T}}= L T^{-1} T^{-1}= L T^{-2}[/tex]
Part c
From definition if we do the integral of the velocity respect to t we got the position:
[tex] \int v dt = s(t)[/tex]
And the dimensional analysis for the position is:
[tex] \int v dt = s(t) = [L]=L[/tex]
Part d
The integral for the acceleration respect to the time is the velocity:
[tex] \int a dt = v(t)[/tex]
And the dimensional analysis for the position is:
[tex] \int a dt = v(t) = [L][T]^{-1}=LT^{-1}[/tex]
Part e
If we take the derivate respect to the acceleration and we want to find the dimensional analysis for this case we got:
[tex] \frac{da}{dt}= \frac{[L][T]^{-2}}{T} = [L][T]^{-2} [T]^{-1} = LT^{-3}[/tex]