By the chain rule,
[tex]\dfrac{\partial z}{\partial u}=\dfrac{\partial z}{\partial x}\dfrac{\partial x}{\partial u}+\dfrac{\partial z}{\partial y}\dfrac{\partial y}{\partial u}[/tex]
where [tex]u\in\{r,t\}[/tex].
We have component partial derivatives
[tex]\dfrac{\partial z}{\partial x}=\dfrac{2x}{x^2+y}=\dfrac{2re^t}{r^2e^{2t}+te^r}[/tex]
[tex]\dfrac{\partial z}{\partial y}=\dfrac1{x^2+y}=\dfrac1{r^2e^{2t}+te^r}[/tex]
[tex]\dfrac{\partial x}{\partial r}=e^t[/tex]
[tex]\dfrac{\partial x}{\partial t}=re^t[/tex]
[tex]\dfrac{\partial y}{\partial r}=te^r[/tex]
[tex]\dfrac{\partial y}{\partial t}=e^r[/tex]
Putting the appropriate pieces together and setting [tex](r,t)=(1,2)[/tex], we get
[tex]\dfrac{\partial z}{\partial r}(1,2)=\dfrac{2e^3+2}{e^3+2}[/tex]
[tex]\dfrac{\partial z}{\partial t}(1,2)=\dfrac{2e^3+1}{e^3+2}[/tex]