Answer:
Speed of first train = 36 mph
Speed of second train = 60 mph
Step-by-step explanation:
Given:
First train leaves Cincinnati at 2:00 PM
Second train leaves same station at 4:00 PM
Speed of second train is 24 mph faster than first train.
The second train overtakes the first at 7:00 PM
To find the speeds of each train.
Solution:
First train:
Let speed of first train be = [tex]x\ mph[/tex]
Time of travel between 2:00 PM to 7:00 PM = [tex]7-2=5\ h[/tex]
Distance traveled by 1st train in 5 hours in miles = [tex]Speed\times time = x\times 5 = 5x[/tex]
Second train:
Then, speed of second train will be = [tex](x+24)\ mph[/tex]
Time of travel between 4:00 PM to 7:00 PM =[tex]7-4 = 3\ h[/tex]
Distance traveled by second train in 3 hours in miles = [tex]Speed\times time = (x+24)\times 3=3x+72[/tex]
At 7:00 PM both trains meet as the second train overtakes the first. This means the distance traveled by both the trains is same at 7:00 PM as they both leave from same stations.
Thus, we have:
[tex]5x=3x+72[/tex]
Solving for [tex]x[/tex]
Subtracting both sides by [tex]3x[/tex]
[tex]5x-3x=3x-3x+72[/tex]
[tex]2x=72[/tex]
Dividing both sides by 2.
[tex]\frac{2x}{2}=\frac{72}{2}[/tex]
∴ [tex]x=36[/tex]
Speed of first train = 36 mph
Speed of second train = [tex]36+24=[/tex] 60 mph