Answer:
The simplified expression to the given expression is [tex]\frac{4x^6}{y^2}[/tex]
Therefore [tex]\frac{4(2x^3y^4)^4}{2(2x^2y^6)^3}=\frac{4x^6}{y^2}[/tex]
Step-by-step explanation:
Given fractional expression is [tex]\frac{4(2x^3y^4)^4}{2(2x^2y^6)^3}[/tex]
To simplify the given expression as below :
[tex]\frac{4(2x^3y^4)^4}{2(2x^2y^6)^3}[/tex]
[tex]=\frac{2(2x^3y^4)^4}{(2x^2y^6)^3}[/tex]
[tex]=\frac{2[(2)^4(x^3)^4(y^4)^4]}{(2)^3(x^2)^3(y^6)^3}[/tex] ( using the property [tex](a^m)^n=a^{mn}[/tex])
[tex]=\frac{2[(2)^4(x^{12})(y^{16})]}{(2)^3(x^6)(y^{18})}[/tex]
[tex]=2[(2)^4(x^{12})(y^{16})](2)^{-3}(x^{-6})(y^{-18})[/tex] ( ( using the property [tex]a^m=\frac{1}{a^{-m}}[/tex] )
[tex]=2[2^{4-3}x^{12-6}y^{16-18}][/tex]( using the property [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]=2[2^1x^6y^{-2}][/tex]
[tex]=\frac{4x^6}{y^2}[/tex] ( using the property [tex]a^m=\frac{1}{a^{-m}}[/tex] )
Therefore the simplified expression is [tex]\frac{4x^6}{y^2}[/tex]
Therefore [tex]\frac{4(2x^3y^4)^4}{2(2x^2y^6)^3}=\frac{4x^6}{y^2}[/tex]