Respuesta :

Answer:

x = 4 and y = 8

Step-by-step explanation:

Using the tangent and cosine ratios in the right triangle and the exact values

tan30° = [tex]\frac{1}{\sqrt{3} }[/tex], cos30° = [tex]\frac{\sqrt{3} }{2}[/tex]

tan30° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{x}{4\sqrt{3} }[/tex] = [tex]\frac{1}{\sqrt{3} }[/tex] ( cross- multiply )

[tex]\sqrt{3}[/tex] x = 4[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

x = 4

-------------------------------------------------------------------

cos30° = [tex]\frac{adjacent}{hypotenuse}[/tex] = [tex]\frac{4\sqrt{3} }{y}[/tex] = [tex]\frac{\sqrt{3} }{2}[/tex] ( cross- multiply )

[tex]\sqrt{3}[/tex] y = 8[tex]\sqrt{3}[/tex] ( divide both sides by [tex]\sqrt{3}[/tex] )

y = 8

RELAXING NOICE
Relax