Answer:
The average rate of change of the function [tex]h(x) = 3x - 8[/tex] over the interval [tex]x =3\ to\ x=4[/tex] is [tex]3[/tex]
Step-by-step explanation:
Given function is [tex]h(x) = 3x - 8[/tex]
Let [tex]f(x) = 3x - 8[/tex]
And the interval is [tex]x =3\ to\ x=4[/tex]
The average rate of change of the function over the interval to is given by
The average rate of change[tex]=\frac{f(b)-f(a)}{b-a}[/tex]
Plug the value in the equation we get,
[tex]a=3\\f(3)=3(3)-8\\=9-8\\f(3)=1\\\\b=4\\f(4)=3(4)-8\\=12-8\\f(4)=4[/tex]
The average rate of change
[tex]=\frac{f(b)-f(a)}{b-a}\\\\=\frac{4-1}{4-3}=\frac{3}{1}=3[/tex]
So, the average rate of change of the function [tex]h(x) = 3x - 8[/tex] over the interval [tex]x =3\ to\ x=4[/tex] is [tex]3[/tex]