Respuesta :

Answer:

The average rate of change of the function [tex]h(x) = 3x - 8[/tex] over the interval [tex]x =3\ to\ x=4[/tex] is [tex]3[/tex]

Step-by-step explanation:

Given function  is [tex]h(x) = 3x - 8[/tex]

Let [tex]f(x) = 3x - 8[/tex]

And the interval is [tex]x =3\ to\ x=4[/tex]

The average rate of change of the function  over the interval  to  is given by

The average rate of change[tex]=\frac{f(b)-f(a)}{b-a}[/tex]

Plug the value in the equation we get,

[tex]a=3\\f(3)=3(3)-8\\=9-8\\f(3)=1\\\\b=4\\f(4)=3(4)-8\\=12-8\\f(4)=4[/tex]

The average rate of change

[tex]=\frac{f(b)-f(a)}{b-a}\\\\=\frac{4-1}{4-3}=\frac{3}{1}=3[/tex]

So, the average rate of change of the function [tex]h(x) = 3x - 8[/tex] over the interval [tex]x =3\ to\ x=4[/tex] is [tex]3[/tex]

ACCESS MORE
EDU ACCESS