Respuesta :

Answer:

[tex]4\sqrt{2}+10[/tex]

Step-by-step explanation:

Given:

FPST is a trapezoid,

FP=ST, m∠F=45°,

PF=8, PS=10

To Find:

The Length of the mid-segment MN.

Solution:

This trapezoid FPST is isosceles, because FP=ST

Also

[tex]m\angle F=m\angle T=45^{\circ}.[/tex]

Draw the height PH. Triangle FPH is right triangle with two angles of measure 45°. This means that

FH = HP --------------(1)

By the Pythagorean theorem,

[tex]FH^2+PH^2=PF^2,[/tex]

From (1)

[tex]\\ \\2FH^2=8^2[/tex]  

[tex]\\ \\2FH^2=64[/tex]

[tex]FH^2=\frac{64}{2}[/tex]

[tex]\\FH^2=32[/tex]

[tex]\\FH^2= 2\times 2\times 2 \times2 \times 2[/tex]

[tex]\\FH = \sqrt{2\times 2\times 2 \times2 \times 2}[/tex]

[tex]\\FH=4\sqrt{2}.[/tex]

Since trapezoid FPST is isosceles, the base FT has the length

[tex]FT=2FH+PS\\[/tex]

[tex]FT =8\sqrt{2}+10.[/tex]

Then the length of the mid-segment is

[tex]MN=\dfrac{FT+PS}{2}[/tex]

[tex]MN=\dfrac{8\sqrt{2}+10+10}{2}[/tex]

[tex]MN=\dfrac{8\sqrt{2}+20}{2}[/tex]

[tex]MN=4\sqrt{2}+10.[/tex]

Ver imagen nandhini123
RELAXING NOICE
Relax