Answer:
[tex]4\sqrt{2}+10[/tex]
Step-by-step explanation:
Given:
FPST is a trapezoid,
FP=ST, m∠F=45°,
PF=8, PS=10
To Find:
The Length of the mid-segment MN.
Solution:
This trapezoid FPST is isosceles, because FP=ST
Also
[tex]m\angle F=m\angle T=45^{\circ}.[/tex]
Draw the height PH. Triangle FPH is right triangle with two angles of measure 45°. This means that
FH = HP --------------(1)
By the Pythagorean theorem,
[tex]FH^2+PH^2=PF^2,[/tex]
From (1)
[tex]\\ \\2FH^2=8^2[/tex]
[tex]\\ \\2FH^2=64[/tex]
[tex]FH^2=\frac{64}{2}[/tex]
[tex]\\FH^2=32[/tex]
[tex]\\FH^2= 2\times 2\times 2 \times2 \times 2[/tex]
[tex]\\FH = \sqrt{2\times 2\times 2 \times2 \times 2}[/tex]
[tex]\\FH=4\sqrt{2}.[/tex]
Since trapezoid FPST is isosceles, the base FT has the length
[tex]FT=2FH+PS\\[/tex]
[tex]FT =8\sqrt{2}+10.[/tex]
Then the length of the mid-segment is
[tex]MN=\dfrac{FT+PS}{2}[/tex]
[tex]MN=\dfrac{8\sqrt{2}+10+10}{2}[/tex]
[tex]MN=\dfrac{8\sqrt{2}+20}{2}[/tex]
[tex]MN=4\sqrt{2}+10.[/tex]