Respuesta :

Answer:

[tex]x=-\frac{17}{3}[/tex]

Step-by-step explanation:

we have

[tex]\frac{4}{x-3}+\frac{2}{x^{2}-9}=\frac{1}{x+3}[/tex]

Solve for x

Applying difference of squares in the denominator of the second term in the left side

[tex]\frac{4}{x-3}+\frac{2}{(x+3)(x-3)}=\frac{1}{x+3}[/tex]

Multiply both sides by (x+3)(x-3)

[tex]4(x+3)+2=(x-3)[/tex]

Apply the distributive property in the left side

[tex]4x+12+2=x-3[/tex]

Combine like terms left side

[tex]4x+14=x-3[/tex]

Group terms

[tex]4x-x=-3-14[/tex]

[tex]3x=-17[/tex]

Divide by 3 both sides

[tex]x=-\frac{17}{3}[/tex]

ACCESS MORE