Answer:
a) [tex]7.07[/tex]
b) [tex]2.89[/tex]
Explanation:
First of all we are required to calculate the mean of the Stomata (per examination area) which is equal to
[tex]\frac{(88 + 93 + 90 + 92 + 75 + 78)}{6}\\= 86[/tex]
Now for standard deviation, the formula is
[tex]\sqrt{\frac{(X - X')^2}{n-1} }[/tex]
Where X is the value of number and X' is the value of mean. n is the number of entry.
a)
Substituting the given values in above equation, we get
[tex]\sqrt{\frac{(88-86)^2 + (93 - 86)^2 + (90-86)^2 + (92 -86)^2 + ( 75 -86)^2 + (78 -86)^2}{(6-1)} } \\= \sqrt{\frac{4 + 49 + 16 + 36 + 81 + 64 }{5} } \\= 7.07[/tex]
b) Standard error in the number of stomata for the sunflower leaves.
Standard error = [tex]\frac{7.07}{\sqrt{6} } \\= 2.89[/tex]