What is the length of the arc on a circle with radius 21 in intercepted by a 25° angle? Round your answer to the nearest tenth.

Respuesta :

Answer:

Step-by-step explanation:

The formula for determining the length of an arc is expressed as

Length of arc = θ/360 × 2πr

Where

θ is the central angle formed at the center of the circle.

r represents the radius of the circle.

π represents a constant whose value is 3.14

From the information given,

r = 21 inches

θ = 25 degrees

Length of arc formed = 25/360 × 2 × 3.14 × 21 = 9.2 inches,

Answer: The length of the arc = 9.16

Step-by-step explanation: Formula for the length of an arc is,

=2πr∅°/360° or

   πr∅°/180°.

Where r = radius of the circle, ∅ is the angle substended by the arc of the centre.

Substitute for values in the formula above

      πr∅°/180                                                = 3.142 × 21 × 25/180

                                                                     = 1649 . 55/180

                                                                     = 9.164

                                                                     =9.16

Therefore, the length of the arc                 = 9.16

ACCESS MORE