Respuesta :
Answer:
(a). The magnitude of the acceleration of the proton is [tex]5.74\times10^{13}\ m/s^2[/tex]
(b). The initial peed of the protion is [tex]2.83\times10^{6}\ m/s[/tex]
(c). The time is [tex]0.493\times10^{-7}\ sec[/tex].
Explanation:
Given that,
Electric field [tex]E=-6.00\times10^{5}i\ N/C[/tex]
Time = 5.0 sec
Distance 7.00 cm
(a). We need to calculate the acceleration
Using formula of force
[tex]F=F_{e}[/tex]
[tex]ma=qE[/tex]
[tex]a=\dfrac{Eq}{m}[/tex]
Where, E = electric field
m = mass of proton
q = charge of proton
Put the value into the formula
[tex]a=\dfrac{-6.00\times10^{5}\times1.6\times10^{-19}}{1.67\times10^{-27}}[/tex]
[tex]a=-5.74\times10^{13}\ m/s62[/tex]
The magnitude of the acceleration of the proton is [tex]5.74\times10^{13}\ m/s^2[/tex]
(b). We need to calculate the initial peed
Using equation of motion
[tex]v^2-u^2=2as[/tex]
Where, s = distance
Put the value into the formula
[tex]0-u^2=2\times(-5.74\times10^{13})\times7.00\times10^{-2}[/tex]
[tex]u=\sqrt{2\times5.74\times10^{13}\times7.00\times10^{-2}}[/tex]
[tex]u=2834783.94[/tex]
[tex]u=2.83\times10^{6}\ m/s[/tex]
The initial peed of the protion is [tex]2.83\times10^{6}\ m/s[/tex]
(c). We need to calculate the time interval over which the proton comes to rest
Using formula
[tex]t=\dfrac{u}{a}[/tex]
Where, u = initial velocity
a = acceleration
Put the value into the formula
[tex]t=\dfrac{2.83\times10^{6}}{5.74\times10^{13}}[/tex]
[tex]t=0.493\times10^{-7}\ sec[/tex]
Hence, (a). The magnitude of the acceleration of the proton is [tex]5.74\times10^{13}\ m/s^2[/tex]
(b). The initial peed of the protion is [tex]2.83\times10^{6}\ m/s[/tex]
(c). The time is [tex]0.493\times10^{-7}\ sec[/tex].