Respuesta :
Answer:
The slope of the secant line PQ is the following for each point:
Q Slope (a)
(5, 2097) -131.7 gal/min
(10, 1308) -105.6 gal/min
(20, 303) -95.4 gal/min
(25, 87) -69.3 gal/min
(30, 0) -52 gal/min
Step-by-step explanation:
The slope can be easily obtained by using a linear approximation for the 2 points P and Q. In this case, with the slope a:
[tex]f(t)=V(t)=at+b[/tex]
[tex]f(t_P)=V_P=at_P+b[/tex] (1)
[tex]f(t_Q)=V_Q=at_Q+b[/tex] (2)
if equations 1 and 2 are subtracted:
[tex]V_P-V_Q=at_P -at_Q=a(t_P -t_Q)\\a=\frac{V_P-V_Q}{t_P -t_Q}[/tex]
a) The slopes of the secant lines are listed below:
- [tex]m_{PQ} = -131.7\,\frac{gal}{min}[/tex]
- [tex]m_{PQ} = -105,6\,\frac{gal}{min}[/tex]
- [tex]m_{PQ} =-95.4\,\frac{gal}{min}[/tex]
- [tex]m_{PQ} = -69.3\,\frac{gal}{min}[/tex]
- [tex]m_{PQ} = -52\,\frac{gal}{min}[/tex]
b) The slope of the tangent line is approximately -100.5 gallons per minute.
Application of secant and tangent line in a water tank draining process
a) The value of the slope of line secant ([tex]m_{PQ}[/tex]) to a curve is defined by the following expression:
[tex]m_{PQ} = \frac{y_{Q}-y_{P}}{x_{Q}-x_{P}}[/tex], where [tex]x_{Q} \ne x_{P}[/tex] (1)
Now we proceed to calculate for each case:
i) [tex]Q(x,y) = (5, 2097)[/tex]
[tex]m_{PQ} = \frac{2097-780}{5-15}[/tex]
[tex]m_{PQ} = -131.7\,\frac{gal}{min}[/tex] [tex]\blacksquare[/tex]
ii) [tex]Q(x,y) = (10, 1308)[/tex]
[tex]m_{PQ} = \frac{1308-780}{10-15}[/tex]
[tex]m_{PQ} = -105,6\,\frac{gal}{min}[/tex] [tex]\blacksquare[/tex]
iii) [tex]Q(x,y) = (20, 303)[/tex]
[tex]m_{PQ} = \frac{303-780}{20-15}[/tex]
[tex]m_{PQ} =-95.4\,\frac{gal}{min}[/tex] [tex]\blacksquare[/tex]
iv) [tex]Q(x,y) = (25, 87)[/tex]
[tex]m_{PQ} = \frac{87-780}{25-15}[/tex]
[tex]m_{PQ} = -69.3\,\frac{gal}{min}[/tex] [tex]\blacksquare[/tex]
v) [tex]Q(x,y) = (30, 0)[/tex]
[tex]m_{PQ} = \frac{0-780}{30-15}[/tex]
[tex]m_{PQ} = -52\,\frac{gal}{min}[/tex] [tex]\blacksquare[/tex]
ii) The slope of the tangent line at P can be estimated by the following formula:
[tex]m_{P} = \frac{m_{RP}+m_{PQ}}{2}[/tex] (2)
Where [tex]m_{RP}[/tex] and [tex]m_{PQ}[/tex] are secant lines.
If we know that [tex]R(x,y) = (10, 1308)[/tex], [tex]P(x,y) = (15, 780)[/tex] and [tex]Q(x,y) = (20, 303)[/tex], then the slope of tangent line is:
[tex]m_{RP} = \frac{780-1308}{15-10}[/tex]
[tex]m_{RP} = -105.6\,\frac{gal}{min}[/tex]
[tex]m_{PQ} = \frac{303-780}{20-15}[/tex]
[tex]m_{PQ} = -95.4\,\frac{gal}{min}[/tex]
[tex]m_{P} = \frac{\left(-105.6\,\frac{gal}{min} \right)+\left(-95.4\,\frac{gal}{min} \right)}{2}[/tex]
[tex]m_{P} = -100.5\,\frac{gal}{min}[/tex]
The slope of the tangent line is approximately -100.5 gallons per minute. [tex]\blacksquare[/tex]
Remark
The statement is incomplete and poorly formatted, the complete and correct form is described below:
A tank holds 3000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table show the volume [tex]V[/tex] of water remaining in the tank (in gallons) after [tex]t[/tex] minutes.
[tex]t(min)[/tex] [tex]V(gal)[/tex]
5 2097
10 1308
15 780
20 303
25 87
30 0
(a) If [tex]P[/tex] is the point (15, 780) on the graph of [tex]V[/tex], find the slopes of the secant lines [tex]PQ[/tex] when [tex]Q[/tex] is the point on the graph with the following values. (Round your answers to one decimal place)
[tex]m_{PQ}[/tex]
(5, 2097)
(10, 1308)
(20, 303)
(25, 87)
(30, 0)
(b) Estimate the slope of the tangent line [tex]P[/tex] by averaging the slopes of two adjacent secant lines. (Round your answer to one decimal place)