Answer:
45.96844 m/s
Explanation:
[tex]m_1[/tex] = Mass of racket = 331 g
[tex]m_2[/tex] = Mass of ball = 56 g
[tex]u_1[/tex] = Initial velocity of racket = 200 km/h
[tex]u_2[/tex] = Initial velocity of ball = 0
[tex]v_1[/tex] = Final velocity of racket
[tex]v_2[/tex] = Final velocity of ball = 204 km/h
In this system the linear momentum is conserved
[tex]m_1u_1+m_2u_2=m_1v_1+m_2v_2\\\Rightarrow v_1=\dfrac{m_1u_1+m_2u_2-m_2v_2}{m_1}\\\Rightarrow v_1=\dfrac{0.331\times \dfrac{200}{3.6}+0.056\times 0-0.056\times \dfrac{204}{3.6}}{0.331}\\\Rightarrow v_1=45.96844\ m/s[/tex]
The velocity of racket after hitting the ball is 45.96844 m/s