Respuesta :

Answer:

0.9905

Step-by-step explanation:

Let [tex]p_{1}[/tex], [tex]p_{2}[/tex],..., [tex]p_{n}[/tex] be the probabilities of all possible outcomes of an event.

Then Entropy(E) can be calculated using the equation

  • E=[tex]-p_{1}*log_{2}(p_{1}) -p_{2}*log_{2}(p_{2}) - ..- p_{n}*log_{2}(p_{n}) [/tex]

In the data set there are two outcomes: positive and negative.

  • [tex]p_{positive}=\frac{368}{660}[/tex] ≈ 0.5576
  • [tex]p_{negative}=\frac{292}{660}[/tex] ≈ 0.4424

Thus, [tex]E=p_{positive}*log_{2}(p_{positive}) +p_{negative}*log_{2}(p_{negative}) = -0.5576*log_{2}(0.5576) -0.4424*log_{2}(0.4424)[/tex]

=[tex] -(log_{2}(0.5576^0.5576) +log_{2}(0.4424^0.4424))[/tex]

=[tex] -(log_{2}((0.5576^0.5576)*(0.4424^0.4424)))[/tex]

=[tex] -(log_{2}(0.5033))[/tex]

=0.9905

ACCESS MORE