Answer:
The fraction is 79/99
Step-by-step explanation:
We can express the given infinite geometric series as follows:
[tex]\frac{79}{10^{2} }+\frac{79}{10^{3} }+\frac{79}{79^{4} }+\frac{79}{10^{5} }+...[/tex]
Which is an infinite geometric series with [tex]r=\frac{1}{10^{2} }<1[/tex] that converges, then its sum is:
[tex]S=\frac{a}{1-r}[/tex]
Where a is the first factor of the serie: [tex]a=\frac{79}{10^{2} }[/tex]
Replacing values:
[tex]S=\frac{\frac{79}{10^{2} } }{1-\frac{1}{10^{2} } } \\S=\frac{\frac{79}{10^{2} } }{\frac{99}{10^{2} } }\\S=\frac{79}{99}[/tex]