Respuesta :

The speed of the particle increases for [tex]t>4[/tex]

Step-by-step explanation:

Given: [tex]s(t)=2t^{3} -24t^{2} +90t+7[/tex]

To find the speed of the particle, we need a second derivative of the equation [tex]s(t)=2t^{3} -24t^{2} +90t+7[/tex]

Differentiating, [tex]s(t)[/tex] we get,

[tex]s'(t)=6t^{2} -48t+90[/tex]

Again differentiating [tex]s'(t)[/tex], we get,

[tex]s''(t)=12t-48[/tex]

Since, we need to find at what value the speed of the particle increasing, we need to equate [tex]s''(t)=0[/tex] to find the interval at which the speed of the particle increases. Thus,

[tex]\begin{array}{r}{s^{\prime \prime}(t)=0} \\{12 t-48=0} \\{12(t-4)=0} \\{t-4=0} \\{t=4}\end{array}[/tex]

Thus, the interval are [tex](0,4][/tex] and [tex][4, \infty)[/tex]

Substituting any one value between the interval [tex](0,4][/tex] in the equation [tex]s''(t)=12t-48[/tex]

[tex]\begin{aligned}s^{\prime \prime}(t) &=12 t-48 \\s^{\prime \prime}(1) &=12-48 \\&=-36<0\end{aligned}[/tex]

The speed of the particle does not increase at the interval [tex](0,4][/tex]

Now, substituting any one value between the interval [tex][4, \infty)[/tex] in the equation [tex]s''(t)=12t-48[/tex]

[tex]\begin{aligned}s^{\prime \prime}(t) &=12 t-48 \\s^{\prime \prime}(5) &=60-48 \\&=12>0\end{aligned}[/tex]

Thus, the speed of the particle increases during the interval [tex][4, \infty)[/tex]

Hence, the speed of the particle increases for [tex]t>4[/tex]

ACCESS MORE
EDU ACCESS