Answer:
0.21 lunar month
Explanation:
the radius of moon = r₁
time period of the moon = T₁ = 1 lunar month
The radius of the satellite = 0.35 r₁
Time period of satellite
The relation between time period and radius
[tex] T\ \alpha\ \sqrt{r^3}[/tex]
now,
[tex]\dfrac{T_2}{T_1}=\dfrac{\sqrt{r_2^3}}{\sqrt{r_1^3}}[/tex]
[tex]\dfrac{T_2}{T_1}=\dfrac{\sqrt{0.35^3r_1^3}}{\sqrt{r_1^3}}[/tex]
[tex]\dfrac{T_2}{1}=\sqrt{0.35^3}[/tex]
T₂ = 0.21 lunar month
hence, the time period of revolution of satellite is equal to 0.21 lunar month