s908026
contestada

The bases and height of these three right triangles (i don't have the pictures up but they are triangles) are in the same proportional relationship to each other
7 1/2 9, 10 1/4 12 3/10, 16 3/4 20 1/10,
what is the constant of proportionality?

Respuesta :

Answer:

The constant of proportionality is [tex]k=\frac{6}{5}[/tex]

Step-by-step explanation:

we know that

A relationship between two variables, x, and y, represent a proportional variation if it can be expressed in the form [tex]k=\frac{y}{x}[/tex] or [tex]y=kx[/tex]

Let

x ----> the base of triangle

y ----> the height of triangle

To find out the constant of proportionality, divide the height by the base

First case

[tex]x=7\frac{1}{2}=\frac{7*2+1}{2}=\frac{15}{2}[/tex]

[tex]y=9[/tex]

[tex]k=\frac{y}{x}[/tex]

substitute

[tex]k=9:\frac{15}{2}=\frac{18}{15}[/tex]

Simplify

[tex]k=\frac{6}{5}[/tex]

Second case

[tex]x=10\frac{1}{4}=\frac{10*4+1}{4}=\frac{41}{4}[/tex]

[tex]y=12\frac{3}{10}=\frac{12*10+3}{10}=\frac{123}{10}[/tex]

[tex]k=\frac{y}{x}[/tex]

substitute

[tex]k=\frac{123}{10}:\frac{41}{4}=\frac{492}{410}[/tex]

Simplify

[tex]k=\frac{6}{5}[/tex]

Third case

[tex]x=16\frac{3}{4}=\frac{16*4+3}{4}=\frac{67}{4}[/tex]

[tex]y=20\frac{1}{10}=\frac{20*10+1}{10}=\frac{201}{10}[/tex]

[tex]k=\frac{y}{x}[/tex]

substitute

[tex]k=\frac{201}{10}:\frac{67}{4}=\frac{804}{670}[/tex]

Simplify

[tex]k=\frac{6}{5}[/tex]

ACCESS MORE