Respuesta :
Answer:
Part 2) Triangle ABC is a right triangle (see the explanation)
Part 3) Quadrilateral QRST is not a parallelogram (see the explanation)
Step-by-step explanation:
Part 2) we have
A (5, 2), B (2, 4), and C (7, 5)
Plot the figure to better understand the problem
see the attached figure
we know that
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
step 1
Find the length side AB
A (5, 2), B (2, 4)
substitute the values in the formula
[tex]d=\sqrt{(4-2)^{2}+(2-5)^{2}}[/tex]
[tex]d=\sqrt{(2)^{2}+(-3)^{2}}[/tex]
[tex]d_A_B=\sqrt{13}\ units[/tex]
step 2
Find the length side BC
B (2, 4), C (7, 5)
substitute the values in the formula
[tex]d=\sqrt{(5-4)^{2}+(7-2)^{2}}[/tex]
[tex]d=\sqrt{(1)^{2}+(5)^{2}}[/tex]
[tex]d_B_C=\sqrt{26}\ units[/tex]
step 3
Find the length side AC
A (5, 2), C (7, 5)
substitute the values in the formula
[tex]d=\sqrt{(5-2)^{2}+(7-5)^{2}}[/tex]
[tex]d=\sqrt{(3)^{2}+(2)^{2}}[/tex]
[tex]d_A_C=\sqrt{13}\ units[/tex]
step 4
Verify if the triangle ABC is a right triangle
we know that a right triangle must satisfy the Pythagorean Theorem
so
[tex]BC^2=AB^2+AC^2[/tex]
Remember that the hypotenuse is the greater side
substitute the values
[tex](\sqrt{26})^2=(\sqrt{13})^2+(\sqrt{13})^2[/tex]
[tex]26=13+13[/tex]
[tex]26=26[/tex] ----> is true
therefore
Triangle ABC is a right triangle
Part 3) we have
Q (5, 1), R (8, 7), S (14, 10) and T (10, 2)
we know that
The opposite sides of a parallelogram are parallel and congruent
the formula to calculate the distance between two points is equal to
[tex]d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}[/tex]
Step 1
Find the length side QR
Q (5, 1), R (8, 7)
substitute in the formula
[tex]d=\sqrt{(7-1)^{2}+(8-5)^{2}}[/tex]
[tex]d=\sqrt{(6)^{2}+(3)^{2}}[/tex]
[tex]d_Q_R=\sqrt{45}\ units[/tex]
Step 2
Find the length side RS
R (8, 7), S (14, 10)
substitute in the formula
[tex]d=\sqrt{(10-7)^{2}+(14-8)^{2}}[/tex]
[tex]d=\sqrt{(3)^{2}+(6)^{2}}[/tex]
[tex]d_R_S=\sqrt{45}\ units[/tex]
Step 3
Find the length side ST
S (14, 10), T (10, 2)
substitute in the formula
[tex]d=\sqrt{(2-10)^{2}+(10-14)^{2}}[/tex]
[tex]d=\sqrt{(-8)^{2}+(-4)^{2}}[/tex]
[tex]d_S_T=\sqrt{80}\ units[/tex]
Step 4
Find the length side QT
Q (5, 1), T (10, 2)
substitute in the formula
[tex]d=\sqrt{(2-1)^{2}+(10-5)^{2}}[/tex]
[tex]d=\sqrt{(1)^{2}+(5)^{2}}[/tex]
[tex]d_Q_T=\sqrt{26}\ units[/tex]
Step 5
Compare the length of the opposite sides
QR and ST
[tex]\sqrt{45}\ units \neq \sqrt{80}\ units[/tex]
[tex]d_Q_R \neq d_S_T[/tex]
RS and QT
[tex]\sqrt{45}\ units \neq \sqrt{26}\ units[/tex]
[tex]d_R_S \neq d_Q_T[/tex]
Opposite sides are not congruent
therefore
Quadrilateral QRST is not a parallelogram
