Respuesta :

frika

Answer:

See explanation

Step-by-step explanation:

16. Two parallel lines are cut by transversal. Angles with measures [tex](6x+20)^{\circ}[/tex] and [tex](x+100)^{\circ}[/tex] are alternate exterior angles. By alternate exterior angles, the measures of alternate exterior angles are the same:

[tex]6x+20=x+100\\ \\6x-x=100-20\\ \\5x=80\\ \\x=16[/tex]

Then

[tex](6x+20)^{\circ}=(6\cdot 16+20)^{\circ}=116^{\circ}\\ \\(x+100)^{\circ}=(16+100)^{\circ}=116^{\circ}[/tex]

17. Two parallel lines are cut by transversal. Angles with measures [tex](2x+12)^{\circ}[/tex] and [tex](3x-22)^{\circ}[/tex] are alternate interior angles. By alternate interior angles, the measures of alternate interior angles are the same:

[tex]2x+12=3x-22\\ \\2x-3x=-22-12\\ \\-x=-34\\ \\x=34[/tex]

Then

[tex](2x+12)^{\circ}=(2\cdot 34+12)^{\circ}=80^{\circ}\\ \\(3x-22)^{\circ}=(3\cdot 34-22)^{\circ}=80^{\circ}[/tex]

18. Two parallel lines are cut by transversal. Angles with measures [tex](6x-7)^{\circ}[/tex] and [tex](5x+10)^{\circ}[/tex] are alternate exterior angles. By alternate interior angles, the measures of alternate exterior angles are the same:

[tex]6x-7=5x+10\\ \\6x-5x=10+7\\ \\x=17[/tex]

Then

[tex](6x-7)^{\circ}=(6\cdot 17-7)^{\circ}=95^{\circ}\\ \\(5x+10)^{\circ}=(5\cdot 17+10)^{\circ}=95^{\circ}[/tex]

19. The diagram shows two complementary angles with measures [tex]2x^{\circ}[/tex] and [tex]56^{\circ}[/tex]. The measures of complementary angles add up to [tex]90^{\circ},[/tex] then

[tex]2x+56=90\\ \\2x=90-56\\ \\2x=34\\ \\x=17[/tex]

Hence,

[tex]2x^{\circ}=2\cdot 17^{\circ}=34^{\circ}[/tex]

Check:

[tex]34^{\circ}+56^{\circ}=90^{\circ}[/tex]

20. Angles [tex]\angle 1[/tex] and [tex]\angle 2[/tex] are vertical angles. By vertical angles theorem, vertical angles are congruent, so

[tex]m\angle 1=m\angle 2\\ \\5x+7=3x+15\\ \\5x-3x=15-7\\ \\2x=8\\ \\x=4[/tex]

Hence,

[tex]m\angle 1=(5x+7)^{\circ}=(5\cdot 4+7)^{\circ}=27^{\circ}\\ \\m\angle 2=(3x+15)^{\circ}=(3\cdot 4+15)^{\circ}=27^{\circ}[/tex]

21. [tex]\angle 5[/tex] and [tex]\angle 8[/tex] are supplementary. The measures of supplementary angles add up to [tex]180^{\circ},[/tex] so

[tex]m\angle 5+m\angle 8=180^{\circ}\\ \\3x-40+7x-120=180\\ \\10x-160=180\\ \\10x=180+160\\ \\10x=340\\ \\x=34[/tex]

Therefore,

[tex]m\angle 5=(3x-40)^{\circ}=(3\cdot 34-40)^{\circ}=62^{\circ}\\ \\m\angle 8=(7x-120)^{\circ}=(7\cdot 34-120)^{\circ}=118^{\circ}\\ \\62^{\circ}+118^{\circ}=180^{\circ}[/tex]

ACCESS MORE